Home
Class 12
MATHS
Let |{:(y^(5)z^(6)(z^(3)-y^(3)),,x^(4)...

Let
`|{:(y^(5)z^(6)(z^(3)-y^(3)),,x^(4)z^(6)(x^(3)-z^(3)),,x^(4)y^(5)(y^(3)-x^(3))),(y^(2)z^(3)(y^(6)-z^(6)),,xz^(3)(z^(6)-x^(6)) ,,xy^(2)(x^(6)-y^(6))),(y^(2)^(3)(z^(3)-y^(3)),,xz^(3)(x^(3)-z^(3)),,xy^(2)(y^(3)-x^(3))):}| " and " Delta_(2)= |{:(x,,y^(2),,z^(3)),(x^(4),,y^(5) ,,z^(6)),(x^(7),,y^(8),,z^(9)):}| `.Then `Delta_(1)Delta_(2)` is equal to

Promotional Banner

Similar Questions

Explore conceptually related problems

Delta_(1) = |(y^(5)z^(6) (z^(3)-y^(3)),x^(4)z^(6)(x^(3)-z^(3)),x^(4)y^(5)(y^(3)-x^(3))),(y^(2)z^(3)(y^(6)-z^(6)),xz^(3)(z^(6)-x^(6)),xy^(2)(x^(6)-y^(6))),(y^(2)z^(3)(z^(3)-y^(3)),xz^(3)(x^(3)-z^(3)),xy^(2)(y^(3)-x^(3)))| and Delta_(2)=|(x,y^(2),z^(3)),(x^(4),y^(5),z^(6)),(x^(7), y^(8),z^(9))| Then Delta_(1) Delta_(2) is equal to a) Delta_(2)^(2) b) Delta_(2)^(3) c) Delta_(2)^(4) d)None of these

If x,y,z in R and |{:(x,y^2,z^3),(x^4,y^5,z^6),(x^7,y^8,z^9):}|=2 then find the value of |{:(y^5z^6(z^3-y^3),x^4z^6(x^3-z^3),x^4y^5(y^3-x^3)),(y^2z^3(y^6-z^6),xz^3(z^6-x^6), xy^2(x^6-y^6)),(y^2z^3(z^3-y^3),xz^3(x^3-z^3),xy^2(y^3-x^3)):}|

Prove the following : |{:(x,y,z),(x^(2),y^(2),z^(2)),(x^(3),y^(3),z^(3)):}|=|{:(x,x^(2),x^(3)),(y,y^(2),y^(3)),(z,z^(2),z^(3)):}|=xyz(x-y)(y-z)(z-x)

Factorize: ((x)/(2)+y+(z)/(3))^(3)+((x)/(3)-(2y)/(3)+z)^(3)+(-(5x)/(6)-(y)/(3)-(4z)/(3))^(3)

Factorise : ((x)/(2)+y+(z)/(3))^(3)+((x)/(3)-(2y)/(3)+z)^(3)-((5x)/(6)+(y)/(3)+(4z)/(3))^(3)

3^4x^3y^6z^4xx27x^(-2)z^(-6)div81xy^(2)z^(-3)= ______

Prove that: {:|(x,y,z),(x^2,y^2,z^2),(x^3,y^3,z^3)|=|(x,x^2,x^3),(y,y^2,y^3),(z,z^2,z^3)| = xyz(x-y(y-z)(z-x)