Home
Class 12
MATHS
If (lim)(x->2)(f(x-9))/(x-2)=3 then (lim...

If `(lim)_(x->2)(f(x-9))/(x-2)=3` then `(lim)_(x->2)f(x),` is

Promotional Banner

Similar Questions

Explore conceptually related problems

lim_(x rarr2)(f(x)-f(2))/(x-2)=

If lim_(x rarr4)(f(x)-5)/(x-2)=1 then lim_(x rarr4)f(x)=

If the function f(x) satisfies (lim)_(x->1)(f(x)-2)/(x^2-1)=pi, evaluate (lim)_(x->1)f(x)

If lim_(x rarr-2)(f(x))/(x^(2))=1, find (i)lim_(x rarr-2)f(x) and (ii) lim_(x rarr-2)(f(x))/(x)

If lim_(x rarr-2)(f(x))/(x^(2))=1, find (i)lim_(x rarr-2)f(x);(ii)lim_(x rarr-2)(f(x))/(x)

If ("lim")_(x->a)[f(x)+g(x)]=2a n d ("lim")_(x->a)[f(x)-g(x)]=1, then find the value of ("lim")_(x->a)f(x)g(x)dot

If the function f(x) satisfies lim_(x to 1) (f(x)-2)/(x^(2)-1)=pi , then lim_(x to 1)f(x) is equal to

Given lim_(x rarr0)(f(x))/(x^(2))=2 then lim_(x rarr0)[f(x)]=

Let f(x)=(x^2-9x+20)/(x-[x]) (where [x] is the greatest integer not greater than xdot Then (A) ("lim")_(x->5)f(x)=1 (B) ("lim")_(x->5)f(x)=0 (C) ("lim")_(x->5)f(x) does not exist. (D)none of these

Let f(x)=(x^2-9x+20)/(x-[x]) (where [x] is the greatest integer not greater than xdot Then (A) ("lim")_(x->5)f(x)=1 (B) ("lim")_(x->5)f(x)=0 (C) ("lim")_(x->5)f(x) does not exist. (D)none of these