Home
Class 12
MATHS
Derivative of sin^(-1)((t)/(sqrt(1+t^(2)...

Derivative of `sin^(-1)((t)/(sqrt(1+t^(2))))` with respect to `cos^(-1)((1)/(sqrt(1+t^(2)))` is

Promotional Banner

Similar Questions

Explore conceptually related problems

Find the derivative of tan^(-1)((t)/(sqrt(1-t^(2)))) w.r.t. "sec"^(-1)((1)/(2t^(2)-1)) .

If x=sin^(-1)((t)/(sqrt(1+t^(2)))),y=cos^(-1)((1)/(sqrt(1+t^(2)))),"show that "(dy)/(dx)=1

Derivative of sin^(-1)x w.r.t. cos^(-1) sqrt(1-x^(2)) is -

Derivative of sin^(-1)x w.r.t. cos^(-1) sqrt(1-x^(2)) is -

Derivative of tan^(-1){(x)/(1+sqrt(1-x^(2)))}w.r.t.sin^(-1) is

x = cos^(-1)((1)/(sqrt(1+t^(2)))),y = sin^(-1)((t)/(sqrt(1+t^(2))))rArr(dy)/(dx) is equal to

Find the derivative of 1/(1 - t^2) with respect to 1 + t^(2) .