Home
Class 12
MATHS
Show that sin^(-1)(3/5)-sin^(-1)(8/17)=c...

Show that `sin^(-1)(3/5)-sin^(-1)(8/17)=cos^(-1)(84/85)`

Text Solution

AI Generated Solution

To show that \( \sin^{-1}\left(\frac{3}{5}\right) - \sin^{-1}\left(\frac{8}{17}\right) = \cos^{-1}\left(\frac{84}{85}\right) \), we will start from the left-hand side and simplify it step by step. ### Step 1: Use the formula for the difference of inverse sines We can use the formula: \[ \sin^{-1}(a) - \sin^{-1}(b) = \sin^{-1}(a\sqrt{1-b^2} - b\sqrt{1-a^2}) \] where \( a = \frac{3}{5} \) and \( b = \frac{8}{17} \). ...
Promotional Banner

Topper's Solved these Questions

  • INVERSE TRIGONOMETRIC FUNCTIONS

    NCERT|Exercise Exercise 2.1|14 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    NCERT|Exercise EXERCISE 2.2|21 Videos
  • INTEGRALS

    NCERT|Exercise EXERCISE 7.4|25 Videos
  • LINEAR PROGRAMMING

    NCERT|Exercise SOLVED EXAMPLES|11 Videos

Similar Questions

Explore conceptually related problems

Show that : sin^(-1) (3/5) + sin^(-1) (8/17) = cos^(-1) (36/85) .

Prove that sin^(-1)(3/5)+cos^(-1)(15/17)=cos^(-1)(36/85)

Prove that sin^(-1) . 3/5 - sin ^(-1) . 8/17 = cos^(-1) . 84/85

Show that : sin^(-1)(8/(17))+sin^(-1)(3/5)=sin^(-1)(77/85)

Prove each of the following sin^(-1)((3)/(5))+sin^(-1)((8)/(17))=sin^(-1)((77)/(85))

Prove each of the following sin^(-1)((3)/(5))+sin^(-1)((8)/(17))=sin^(-1)((77)/(85))

Prove that sin^(-1)((8)/(17))+sin^(-1)((3)/(5))=cos^(-1)((36)/(85))

Show that : 2 sin^(-1) (3/5)-tan^(-1) (17/31) = pi/4

Prove that : sin^(-1)(8/(17))+sin^(-1)(3/5)=sin^(-1)((77)/(85))=tan^(-1)((77)/(36))

Show that : 2 sin^(-1).(3/5) - tan^(-1)(17/31) = pi/4