Home
Class 11
MATHS
Let P={theta: s intheta-costheta=sqrt(2)...

Let `P={theta: s intheta-costheta=sqrt(2)costheta}a n d\ Q={theta: s intheta+costheta=sqrt(2)s intheta}` be two sets. Then `PsubQ\ a n d Q-P!=O/` b. `Q P` c. `P Q` d. `P=Q`

Promotional Banner

Similar Questions

Explore conceptually related problems

Let P={theta:sintheta-costheta=sqrt2costheta}and Q={theta: sintheta+costheta=sqrt2sintheta} be two sets. Then

Let P={theta:sintheta-costheta=sqrt2costheta}and Q={theta: sintheta+costheta=sqrt2sintheta} be two sets. Then

Let P={theta:sintheta-costheta=sqrt2cos theta} and Q={theta:sintheta+costheta=sqrt2sintheta} be two set. Then,

Let P={theta:sintheta-costheta=sqrt2cos theta}and Q={theta:sintheta+costheta=sqrt2sintheta} be two ses. Then,

Let P = [theta : sintheta – costheta = sqrt2 costheta) andQ= {theta : sintheta + costheta = sqrt2 sintheta} be two sets. Then:

Let P = [theta : sintheta – costheta = sqrt2 costheta) andQ= {theta : sintheta + costheta = 12 sintheta} be two sets. Then:

Let P = [theta : sintheta – costheta = sqrt2 costheta) andQ= {theta : sintheta + costheta = 12 sintheta} be two sets. Then:

If P={theta:sintheta-costheta=sqrt2costheta} and Q={theta: sintheta+costheta=sqrt2 sintheta} , then show that P = Q.

If costheta=(p)/(sqrt(p^2+q^2)) then tantheta is :

If sectheta =sqrt(p^2+q^2)/q , then the value of (p sintheta-q costheta)/(p sintheta+q costheta) .