Home
Class 12
MATHS
The circle x^(2)+y^(2)=4 cuts the circle...

The circle `x^(2)+y^(2)=4` cuts the circle `x^(2)+y^(2)-2x-4=0` at the points A and B. If the circle `x^(2)+y^(2)-4x-k=0` passes through A and B then the value of k , is

Promotional Banner

Similar Questions

Explore conceptually related problems

If the circle x^(2)+y^(2)+8x-4y+c=0 touches the circle x^(2)+y^(2)+2x+4y-11=0 externally and cuts the circle x^(2)+y^(2)-6x+8y+k=0 orthogonally then k

The line 3x -4y = k will cut the circle x^(2) + y^(2) -4x -8y -5 = 0 at distinct points if

The line 3x -4y = k will cut the circle x^(2) + y^(2) -4x -8y -5 = 0 at distinct points if

The normal to-be circle x^2 +y^2 - 4x + 6y -12=0 passes through the point

The line x-2=0 cuts the circle x^(2)+y^(2)-8x-2y+8=0 at A and B . The equation of the circle passing through the points A and B and having least radius is

If the circle x^(2) + y^(2) + 2x - 2y + 4 = 0 cuts the circle x^(2) + y^(2) + 4x - 2fy + 2 = 0 orthogonally , then f =

If the circle x^(2)+y^(2)+2 x-2 y+4=0 cuts the circle x^(2)+y^(2)+4 x+2 f y+2 =0 orthogonally then f=

If the circle x^2+y^2+8x-4y+c=0 touches the circle x^2+y^2+2x+4y-11=0 externally and cuts the circle x^2+y^2-6x+8y+k=0 orthogonally then k =

If the circle x^(2) + y^(2) + 8x - 4y + c = 0 touches the circle x^(2) + y^(2) + 2x + 4y - 11 = 0 externally and cuts the circle x^(2) + y^(2) - 6x + 8y + k = 0 orthogonally then k =