Home
Class 11
MATHS
The sum of m terms and n terms of an A.P...

The sum of m terms and n terms of an A.P. ae equal. Prove that the sum of (m+n) terms will be zero. Given that `mnen.`

Promotional Banner

Similar Questions

Explore conceptually related problems

The sum of m and n terms of an A.P. are n and m respectively. Prove that the sum of (m + n) terms will be - (m+n).

The ratio of the sums of m terms and n terms of an A.P. is m^(2) : n^(2). Prove that the ratio of their mth and nth term will be (2m - 1) : (2n-1).

The ratio of the sums of m terms and n terms of an A.P. is m^(2) : n^(2). Prove that the ratio of their mth and nth term will be (2m - 1) : (2n-1).

If sum of m terms is n and sum of n terms is m, then show that the sum of (m + n) terms is -(m + n).

If sum of m terms is n and sum of n terms is m,then show that the sum of (m+n) terms is -(m+n) .

If in an A.P. the sum of m terms is equal to n and the sum of n terms is equal to m then prove that the sum of (m+n) terms is -(m+n)

If in an A.P.the sum of m terms is equal to n and the sum of n terms is equal to m then prove that the sum of (m+n) terms is -(m+n)

If in an A.P. the sum of m terms is equal of n and the sum of n terms is equal to m , then prove that the sum of -(m+n) terms is (m+n) .

If the sum of the first m terms of an A.P. is equal to the sum of either the next n terms or the next p terms, prove that, (m+n)((1)/(m)-(1)/(p)) = (m+p)((1)/(m) - (1)/(n))