Home
Class 9
MATHS
" 41."sin sqrt(1-x^(2))+x^(2)cos4x...

" 41."sin sqrt(1-x^(2))+x^(2)cos4x

Promotional Banner

Similar Questions

Explore conceptually related problems

3cos^(-1)x=sin^(-1)(sqrt(1-x^(2))(4x^(2)-1))

If tanx=b/a then sqrt((a+b)/(a-b))+sqrt((a-b)/(a+b))= ........................... A) (2 sin x)/(sqrt(sin2x)) B) (2 cos x)/(sqrt(cos2x)) C) (2 cos x)/(sqrt(sin2x)) D) (2 sin x)/(sqrt(cos2x))

Statement -1: if -1lexle1 then sin^(-1)(-x)=-sin^(-1)x and cos^(-1)(-x)=pi-cos^(-1)x Statement-2: If -1lexlex then cos^(-1)x=2sin^(-1)sqrt((1-x)/(2))= 2cos^(-1)sqrt((1+x)/(2))

Statement -1: if -1lexle1 then sin^(-1)(-x)=-sin^(-1)x and cos^(-1)(-x)=pi-cos^(-1)x Statement-2: If -1lexlex then cos^(-1)x=2sin^(-1)sqrt((1-x)/(2))= 2cos^(-1)sqrt((1+x)/(2))

cos^(-1)x= 2 sin ^(-1) sqrt((1-x)/(2))=2 cos ^(-1)""sqrt((1+x)/(2))=2tan^(-1)""(sqrt(1-x^(2)))/(1+x)

The derivative of the function f(x)=cos^(-1)((1)/(sqrt(13))(2cos x-3sin x))+sin^(-1)((1)/(sqrt(13))(2cos x+3sin x)), with respect to sqrt(1+x^(2)) at x=(3)/(4) is

int (1)/(sqrt(sin^(2) x cos^(2) x - sin^(4) x)) dx =

If "sin" x + "sin"^(2) x = 1 show that: cos^(4)x + cos^(2)x = 1 (ii) If "sin" x + cos x =sqrt(2) cos x show that: sqrt2 sin x = cos x - sin x

int(cos^(4)x-sin^(4)x)/(sqrt(1+cos4x))dx(cos2x>0)

int(cos^(4)x-sin^(4)x)/(sqrt(1+cos4x))dx,(cos2x>0)