Home
Class 12
MATHS
Prove that: sin^(-1)(12)/(13)+cos^(-1)4/...

Prove that: `sin^(-1)(12)/(13)+cos^(-1)4/5+tan^(-1)(63)/(16)=pi`

Text Solution

Verified by Experts

Let, `sin^-1(12/13) = x and cos^-1(4/5) = y and tan^-1(63/16)=z->(1)`
Then,`sin x = 12/13 and cos y = 4/5`
`tan x = 5/12 and tan y = 3/4`
`x = tan^-1(5/12) and y = tan^-1(3/4)->(2)`
From (1) and (2),
`sin^-1(12/13) + cos^-1(4/5) = tan^-1(12/5)+tan^-1(3/4) `
We know, `tan^-1x+tan-^-1y = tan^-1((x+y)/(1-xy))`
`tan^-1(12/5)+tan^-1(3/4) = tan^-1((12/5+3/4)/(1-12/5**3/4))`
...
Promotional Banner

Topper's Solved these Questions

  • INVERSE TRIGONOMETRIC FUNCTIONS

    NCERT|Exercise Exercise 2.1|14 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    NCERT|Exercise EXERCISE 2.2|21 Videos
  • INTEGRALS

    NCERT|Exercise EXERCISE 7.4|25 Videos
  • LINEAR PROGRAMMING

    NCERT|Exercise SOLVED EXAMPLES|11 Videos

Similar Questions

Explore conceptually related problems

Show that sin^(-1)'5/13+cos^(-1)'3/5=tan^(-1)'63/16 .

Prove that: sin^(-1)((5)/(13))+cos^(-1)((4)/(5))=(1)/(2)sin^(-1)((3696)/(4225))

Prove that sin^(-1)(5/13)+sin^(-1)(16/65)=cos^(-1)(4/5)

Prove that cos^(-1) ((5)/(13))+cos^(-1) (-7/25)+sin^(-1) (36)/(325)=pi

Prove that: cos^(-1)((12)/(13))+sin^(-1)((3)/(5))=sin^(-1)((56)/(65))

Let alpha=2tan^(-1)((1)/(2))+(sin^(-1)3)/(5) and beta=sin^(-1)((12)/(13))+cos^(-1)((4)/(5))+cos^(-1)((16)/(63)) be such that2sin alpha and cos beta are roots of the equation x^(2)-px+q=0, then (p-q) is

Prove that: sin^(-1)((3)/(5))+cos^(-1)((12)/(13))=sin^(-1)((56)/(65))

sin^(-1)(5/13)+tan^(-1)(12/5)=

Prove that: tan^(-1)(63)/(16)=sin^(-1)(5)/(13)+cos^(-1)(3)/(5)

Prove that :tan^(-1)(63)/(16)=sin^(-1)(5)/(13)+cos^(-1)(3)/(5)