Home
Class 12
MATHS
(log(2)10). (log(2)80) - (log(2)5).(log(...

`(log_(2)10). (log_(2)80) - (log_(2)5).(log_(2)160)` is equal to :

Promotional Banner

Similar Questions

Explore conceptually related problems

Prove that : (log_(2)10)(log_(2)80)-(log_(2)5)(log_(2)160)=4 .

The value of log_(2)20log_(2)80-log_(2)5log_(2)320 is equal to a)5 b)6 c)7 d)8

(log_(10) 500000- log_(10)5) is equal to:

(log_(10)2)^(3)+log_(10)8*log_(10)5+(log_(10)5)^(3) is

If log_(2)[log_(3)(log_(2)x)]=1 , then x is equal to

If log_(2)(log_(2)(log_(3)x))=log_(3)(log_(3)(log_(2)y))=0 , then x-y is equal to :

If log_(2)(log_(2)(log_(3)x))=log_(3)(log_(3)(log_(2)y))=0 , then x-y is equal to :

log_(10)(log_(2)3) + log_(10)(log_(3)4) + …….. + log_(10) (log_(1023) 1024) equals

If A=log_(2)log_(2)log_(4)256+2log_(sqrt(2))2 , then A is equal to