Home
Class 10
MATHS
[" Prove that "],[qquad (i)(sin^(2)A cos...

[" Prove that "],[qquad (i)(sin^(2)A cos^(2)B-cos^(2)A sin^(2)B)=(sin^(2)A-sin^(2)B)]

Promotional Banner

Similar Questions

Explore conceptually related problems

Prove that (i) (sin^(2)A cos^(2)B - cos^(2)A sin^(2) B )=(sin^(2)A- sin^(2)B) (ii) (tan^(2)A sec^(2)B - sec^(2)A tan^(2)B)=(tan^(2)A- tan^(2)B)

Prove that : sin^(2)Acos^(2)B-cos^(2)Asin^(2)B=sin^(2)A-sin^(2)B

Prove that : sin^(2)Acos^(2)B-cos^(2)Asin^(2)B=sin^(2)A-sin^(2)B

Prove that (sin^Acos^B-cos^2Asin^2B)=(sin^2A-sin^2B)

Prove: sin^2Acos^2B-cos^2Asin^2B=sin^2A-sin^2B

Prove that sin (A+B) sin (A-B)=cos^(2) B-cos^(2) A

Prove that sin ^(2) A cos ^(2) B+cos ^(2) A sin ^(2) B+cos ^(2) A cos ^(2) B+sin ^(2) A sin ^(2) B=1

If (cos^(4)A)/(cos^(2)B)+(sin^(4)A)/(sin^(2)B)=1 then prove that (i)sin^(2)A+sin^(2)B=2sin^(2)A sin^(2)B(ii)(cos^(4)B)/(cos^(2)A)+(sin^(4)B)/(sin^(2)A)=1

(i) (1)/(sin^(2)a)-(1)/(sin^(2)B)=(cos^(2) a-cos^(2) B)/(sin^(2)a*sin^(2) B)

Prove that sin(A+B)sin(A-B)=sin^(2)A-sin^(2)B=cos^(2)B-cos^(2)A