Home
Class 12
MATHS
If alphaa n dbeta are distict roots of a...

If `alphaa n dbeta` are distict roots of `acostheta+bs intheta=c ,` prove that `sin(alpha+beta)=(2a b)/(a^2+b^2)`

Promotional Banner

Similar Questions

Explore conceptually related problems

If alpha and beta are distinct roots of acostheta+b sintheta=c , prove that sin(alpha+beta)=(2a b)/(a^2+b^2)

If alpha and beta are distict roots of a cos theta+b sin theta=c, prove that sin(alpha+beta)=(2ab)/(a^(2)+b^(2))

If alpha " and " beta are two distinct roots of a cos theta + b sin theta = c , prove that sin (alpha + beta) = (2ab)/(a^(2)+b^(2))

If alpha and beta are roots of the equation acostheta+bsintheta=c then prove that, sin(alpha+beta)=(2ab)/(a^(2)+b^(2))

If alpha and beta be two different roots of equation,a cos theta+b sin theta=c prove that sin(alpha+beta)=(2ab)/(a^(2)+b^(2))

If alphaa n dbeta are the solutions of acostheta+bsintheta=c , then show that "cos"(alpha+beta)=(a^2-b^2)/(a^2+b^2) (ii) cos(alpha-beta)=(2c^2-(a^2+b^2))/(a^2+b^2)

If alpha " and " beta are two distinct roots of a cos theta + b sin theta = c , prove that cos alpha + cos beta = (2ac)/(a^(2)+ b^(2))

If alpha and beta are roots of the equation acostheta+bsintheta=c then prove that, cosalpha+cosbeta=(2ac)/(a^(2)+b^(2))andcosalpha.cosbeta=(c^(2)-b^(2))/(a^(2)+b^(2))

If alpha and beta are distinct roots of the equation : a tan theta+b sec theta=c , prove that tan (alpha+ beta)= (2ac)/(a^2-c^2) .

If alpha and beta be the two different roots of equation a cos theta+b sin theta=c ,prove that : tan(alpha+beta)=(2ab)/(a^(2)-b^(2))