Home
Class 9
MATHS
(1)/(1+x^(a-b))+(1)/(1+x^(b-a))=1...

(1)/(1+x^(a-b))+(1)/(1+x^(b-a))=1

Promotional Banner

Similar Questions

Explore conceptually related problems

Find the value of (1)/(1+x^(a-b))+(1)/(1+x^(b-a))

Solve: 1/(1+x^(a-b))+1/(1+x^(b-a))=?

Prove that. (i) sqrt(x^(-1) y) .sqrt(y^(-1) z) . Sqrt(z^(-1) x) = 1 (ii) ((1)/(x^(a-b)))^((1)/(a-c)).((1)/(x^(b-c))).((1)/(x^(c-b)))^((1)/(c-b))= 1 (iii) (x^(a(b-c)))/(x^(b(a-c))) div ((x^(b))/(x^(a))) (iv) ((x^(a+b))^(2)(x^(b+c))^(2)(x^(c+a))^(2))/((x^(a)x^(b)x^(c))^(4))

(1)/(1+x^(a-b)+x^(a-c))+(1)/(1+x^(b-c)+x^(b-a))+(1)/(1+x^(c-a)+x^(c-b))

Show that: (1)/(1+x^(b-a)+x^(c-a))+(1)/(1+x^(a-b)+x^(c-b))+(1)/(1+x^(b-c)+x^(a-c))=1

(1)/(1+x^(b-a)+x^(c-a))+(1)/(1+x^(a-b)+x^(c-b))+(1)/(1+x^(b-c)+x^(a-c))=1

Prove that: 1/(1+x^(b-a)+\ x^(c-a))+1/(1+x^(a-b)+\ x^(c-b))+1/(1+x^(b-c)+x^(a-c))=1

(1)/(1+x^(a-b)+x^(a-c))+(1)/(1+x^(b-c)+x^(b-a))+(1)/(1+x^(c-a)+x^(c-b))=1