Home
Class 12
MATHS
If f'(x) = sqrt(2 x^2 -1) and y = f(x^2)...

If `f'(x) = sqrt(2 x^2 -1) and y = f(x^2)`, then `(dy)/(dx)` at x=1, is

Promotional Banner

Similar Questions

Explore conceptually related problems

If f'(x)=sqrt(2x^(2)-1) and y=f(x^(2)), then (dy)/(dx) at x=1, is

If f'(x)= sqrt(2x^(2)-1) and y=f(x^(2)),then (dy)/(dx) at x = 1 is

if f'(x)=sqrt(2x^2-1) and y=f(x^2) then (dy)/(dx) at x=1 is:

if f'(x)=sqrt(2x^2-1) and y=f(x^2) then (dy)/(dx) at x=1 is:

if f'(x)=sqrt(2x^2-1) and y=f(x^2) then (dy)/(dx) at x=1 is:

If f'(x)=sqrt(2x^(2)-1) and y=f(x^(2)), then find (dy)/(dx) at x=1

If f'(x)=sqrt(2x^(2)-1) and y=f(x^(2)), then (dy)/(dx) at x=1 is equal to 2b 1c.-2d.-1

if f'(x)=sqrt(2x^(2)-1) and y=f(x^(2)) then (dy)/(dx) at x=1 is:

f'(x)=sqrt(2x^(2)-1) and y=f(x^(2)), then (dy)/(dx) at x=1 is 2(b)1(c)-2 (d) none of these

If f^(prime)(x)=sqrt(2x^2-1) and y=f(x^2) , then find (dy)/(dx) at x=1 .