Home
Class 12
MATHS
Solve tan^(-1)2x+tan^(-1)3x=pi/4....

Solve `tan^(-1)2x+tan^(-1)3x=pi/4`.

Text Solution

AI Generated Solution

To solve the equation \( \tan^{-1}(2x) + \tan^{-1}(3x) = \frac{\pi}{4} \), we can use the identity for the sum of inverse tangents. The identity states: \[ \tan^{-1}(a) + \tan^{-1}(b) = \tan^{-1}\left(\frac{a + b}{1 - ab}\right) \] when \( ab < 1 \). ...
Promotional Banner

Similar Questions

Explore conceptually related problems

Find the solution of tan^(-1) 2x +tan^(-1) 3x = pi/4 , x gt 0

Solve the equation tan^(-1) 2x + tan^(-1) 3x = pi//4

Solve the equation tan^(-1)2x+tan^(-1)3x=(pi)/(4)

The value of x satisfying the equation tan^(-1)(2x)+tan^(-1)3x=(pi)/(4) is

Solve : tan^(-1) 4x +tan^(-1)6x = pi/4

Solution of the equation tan^(-1)(2x) + tan^(-1)(3x) = pi/4

The number of solutions of equation tan^(-1)2x+tan^(-1)3x=pi/4 is (a) 2 (b) 3 (c) 1 (d) none of these

IF tan ^(-1) 2x + tan ^(-1) 3x =(pi)/(4) , then x=