Home
Class 12
MATHS
यदि y= sin ^(-1) [x sqrt (1-x) -sqrt ( ...

यदि ` y= sin ^(-1) [x sqrt (1-x) -sqrt ( x)sqrt(1-x^(2) )]` तब `(dy)/(dx) ` का मान ज्ञात कीजिए|

Promotional Banner

Similar Questions

Explore conceptually related problems

If y=sin^(-1)[xsqrt(1-x)-sqrt(x)sqrt(1-x^(2))] then find (dy)/(dx)

If y=sin ^(-1) (xsqrt( 1-x) +sqrt(x) sqrt (1-x^(2))),then (dy)/(dx)=

If y = sin^(-1) (x sqrt(1-x) - sqrtx sqrt(1-x^(2))) then dy/dx =

Find (dy)/(dx), if y=sin^(-1)[x sqrt(1-x)-sqrt(x)sqrt(1-x^(2))]

If y=sin^(-1)[x sqrt(1-x)-sqrt(x)sqrt(1-x^(2))) and 0

y = sin^(-1) {(sqrt(1 +x) + sqrt(1 -x))/(2)} " then " (dy)/(dx) = ?

Find the (dy)/(dx) of y=sin^(-1)(xsqrt(1-x)+sqrt(x)sqrt(1-x^2))

Find (dy)/(dx), if y=sin^(-1)[xsqrt(\ 1-x)-\ sqrt(x)\ sqrt(1-x^2)\ ]\