Home
Class 11
MATHS
If tanalpha=(1+2^(-x))^(-1), tanbeta=(1+...

If `tanalpha=(1+2^(-x))^(-1), tanbeta=(1+2^(x+1))^(-1)`, then `alpha+beta=`

Promotional Banner

Similar Questions

Explore conceptually related problems

If tan alpha=(1+2^(-x))^(-1), tan beta=(1+2^(x+1))^(-1) then alpha+beta equals

If tan alpha=(1+2^(-x))^(-1), tan beta=(1+2^(x+1))^(-1) then alpha+beta equals

tan alpha=(1+2^(-x))^(-1),tan beta=(1+2^(x+1))^(-1)alpha+beta

If tan alpha =(1+2^(-x))^(-1) and tan beta =(1+2^(x+1))^(-1) then the value of (alpha + beta) is-

If tanalpha=1/(1+2^(-x)) and tanbeta=1/(1+2^(x+1)), then write the value of alpha+beta lying in the interval (0,pi//2) .

If tanalpha=(m)/(m+1), tanbeta=(1)/(2m+1) then alpha+beta =

If tanalpha =(1)/(7) and tanbeta =(1)/(3) , then, cos2alpha is equal to

If tanalpha =(1)/(7) and tanbeta =(1)/(3) , then, cos2alpha is equal to

If tanalpha=(m)/(m+1)andtan beta=(1)/(2m+1) , then (alpha+beta)=?

Fill in the gaps with correct answer . tanalpha = (1)/2, tanbeta = (1)/3, then alpha + beta = _____