Home
Class 11
MATHS
tan^(-1)((x^(2)-y^(2))/(x^(2)+y^(2)))=a...

tan^(-1)((x^(2)-y^(2))/(x^(2)+y^(2)))=a

Promotional Banner

Similar Questions

Explore conceptually related problems

If tan^(-1)((x^(2)-2y^(2))/(x^(2)+2y^(2)))=a show that (dy)/(dx)=(x(1-tana))/(2y(1+tana))

If tan^(-1)((x^(2)-2y^(2))/(x^(2)+2y^(2)))=a,"show that "(dy)/(dx)=(x(1-tana))/(2y(1+tana))

If cos^(-1)((x^(2)-y^(2))/(x^(2)+y^(2)))=tan^(-1)a then prove that (dy)/(dx)=(y)/(x)

If cos^(-1)((x^(2)-y^(2))/(x^(2)+y^(2)))=tan^(-1)a, prove that (dy)/(dx)=(y)/(x)

If cos^(-1)((x^(2)-y^(2))/(x^(2)+y^(2)))=tan^(-1)a, prove that (dy)/(dx)=(y)/(x)

If cos^(-1)((x^(2)-y^(2))/(x^(2)+y^(2)))=tan^(-1)a , prove than (dy)/(dx)=(y)/(x).

tan^(-1)""(x-y)/(1+xy)+tan^(-1)""(y-z)/(1+yz)+tan^(-1)""(z-x)/(1+zx) =tan^(-1)""(x^(2)-y^(2))/(1+x^(2)y^(2))+tan^(-1)""(y^(2)-z^(2))/(1+y^(2)z^(2))+tan^(-1) ""(z^(2)-x^(2))/(1+z^(2)x^(2))

tan^(-1)(x^(2)+y^(2)) = a

Prove that : tan^(-1)((x-y)/(1+xy)) + tan^(-1)((y-z)/(1+yz)) + tan^(-1)( (z-x)/(1+zx)) = tan^(-1)((x^2-y^2)/(1+x^2y^2))+tan^(-1)((y^2-z^2)/(1+y^2z^2))+tan^(-1)((z^2-x^2)/(1+z^2x^2))

Prove that : tan^(-1)((x-y)/(1+xy)) + tan^(-1)((y-z)/(1+yz)) + tan^(-1)( (z-x)/(1+zx)) = tan^(-1)((x^2-y^2)/(1+x^2y^2))+tan^(-1)((y^2-z^2)/(1+y^2z^2))+tan^(-1)((z^2-x^2)/(1+z^2x^2))