Home
Class 11
MATHS
Number of roots of cos^2x+(sqrt(3)+1)/2s...

Number of roots of `cos^2x+(sqrt(3)+1)/2sinx-(sqrt(3))/4-1=0` which lie in the interval `[-pi,pi]` is 2 (b) 4 (c) 6 (d) 8

Promotional Banner

Similar Questions

Explore conceptually related problems

Number of roots of cos^(2)x+(sqrt(3)+1)/(2)sin x-(sqrt(3))/(4)-1=0 which lie in the interval [-pi,pi] is 2(b)4(c)6(d)8

Number of roots of cos^(2) x + (sqrt(3) + 1)/( 2) sin x - (sqrt(3))/(4) - 1 =0 which lie in the interval [- pi, pi] is

Number of roots of cos^(2) x + (sqrt(3 + 1))/( 2) si x - (sqrt( 3))/( 4) - 1 = 0 which lie in the interval [ - pi, pi] is

The number of solution(s) of the equation cos2theta=(sqrt(2)+1)(costheta-1/(sqrt(2))) , in the interval (-pi/4,(3pi)/4), is 4 (b) 1 (c) 2 (d) 3

The number of solution(s) of the equation cos2theta=(sqrt(2)+1)(costheta-1/(sqrt(2))) , in the interval (-pi/4,(3pi)/4), is 4 (b) 1 (c) 2 (d) 3

The number of distinct real roots of |sinxcosxcosxcosxsinxcosxcosxcosxsinx|=0 in the interval -pi/4lt=xlt=pi/4 is 0 (b) 2 (c) 1 (d) 3

The number of distinct real roots of |sinxcosxcosxcosxsinxcosxcosxcosxsinx|=0 in the interval -pi/4lt=xlt=pi/4 is 0 (b) 2 (c) 1 (d) 3

The number of distinct real roots of |sinxcosxcosxcosxsinxcosxcosxcosxsinx|=0 in the interval -pi/4lt=xlt=pi/4 is 0 (b) 2 (c) 1 (d) 3

The number of distinct real roots of |sinxcosxcosxcosxsinxcosxcosxcosxsinx|=0 in the interval -pi/4lt=xlt=pi/4 is 0 (b) 2 (c) 1 (d) 3

The number of distinct roots of |(sinx, cosx, cosx),(cosx, sinx, cosx),(cosx,cosx,sinx)|=0 in the interval -pi/4 le x le pi/4 is (A) 0 (B) 2 (C) 1 (4) 2