Home
Class 12
MATHS
[" Q.7Let "a(1),a(2),a(3)dots" Be terms ...

[" Q.7Let "a_(1),a_(2),a_(3)dots" Be terms of an A.P."If(a_(1)+a_(2)+a_(3)+dots+a_(p))/(a_(1)+a_(2)+a_(3)+dots_(4)+a_(9))=(p^(2))/(q^(2)),p!=q," then "(a_(6))/(a_(21))" equals "],[[" (a) "(41)/(11)," (b) "(7)/(2)," (c) "(2)/(7)," (d) "11/41]]

Promotional Banner

Similar Questions

Explore conceptually related problems

Let a_(1), a_(2), a_(3) ….. be terms of an A.P. If (a_(1) + a_(2) + …..a_(p))/(a_(1) + a_(2) + …..a_(q)) = (p^(2))/(q^(2)) (p ne q) then (a_(6))/(a_(21))=

Let a_(1), a_(2), a_(3), ……… be terms of an A.P. if (a_(1) + a_(2) + ...... a_(p))/(a_(1) + a_(2) + ...... a_(q)) = p^(2)/q^(2) , p != q , then a_(6)/a_(21) equals

Let a_(1) , a_(2) , a_(3) , ..... be terms of an A.P. If (a_(1)+a_(2)+.....+a_(p))/(a_(1)+a_(2)+...... +a_(q))=(p^(2))/(q^(2)) (p ne q) then find (a_(6))/(a_(21)) .

Let a_1, a_(2), a_(3),... ,be the terms of an A.P .If (a_(1)+a_(2)+....+a_(p))/(a_(1)+a_(2)+....+a_(q))=(p^(2))/(q^(2)) where p!=q then (a_(6))/(a_(21))=

If a_(1),a_(2),a_(3),... be terms of an A.P.if (a_(1)+a_(2)+...+a_(p))/(a_(1)+a_(2)+...+a_(q))=(p^(2))/(q^(2)),p!=q, then (a_(6))/(a_(21)) equals 41/11 b.7/2quad c.2/7 d.11/41

Let a_(1),a_(2),a_(3) be terms of an Ap. If (a_(1)+a_(2)+----+a_(p))/(a_(1)+a_(2)----a_(q))=(p^(2))/(q^(2)), p ne q, "then" (a_(6))/(a_(21)) is

Let a_(1),a_(2),a_(3),...... be an A.P.such that (a_(1)+a_(2)+......+a_(p))/(a_(1)+a_(2)+a_(3)+......+a_(q))=(p^(3))/(q^(3));p!=q Then (a_(6))/(a_(21)) is equal to:

Let a_(1) , a_(2) , a_(3) , "……………" be terms of an A.P. If (a_(1) + a_(2) + "........" + a_(p ))/(a_(1) + a_(2) + "......." + a_(q)) = ( p ^(2))/( q^(2)) , p cancel(=)q , then ( a_(6))/( a_(21)) equals :

Let a_(1), a_(2), a_(3) , …..be in A.P. If (a_(1) + a_(2) + …. + a_(10))/(a_(1) + a_(2) + …. + a_(p)) = (100)/(p^(2)), p ne 10 , then (a_(11))/(a_(10)) is equal to :

let a_(1),a_(2),a_(3),........., be an AP such that (a_(1)+a_(2)+a_(3)+.........+a_(p))/(a_(1)+a_(2)+a_(3)+.........+a_(q))=(p^(3))/(q^(3))(p!=q) then find (a_(6))/(a_(21))=?