Home
Class 12
MATHS
[" Domain of "f(x)=log(x-[x])],[" 1) "Rq...

[" Domain of "f(x)=log(x-[x])],[" 1) "Rquad " 2) "Zquad " 3) "R-Zquad 4" ) "(0,oo)]

Promotional Banner

Similar Questions

Explore conceptually related problems

The domain of f(x)=sqrt(log((7x-x^(2))/(12))) is (i) (-oo,oo)( ii) (-oo,4]( (iii) [3,oo) (iv) [3,4]

The domain of f(x)=((log)_2(x+3))/(x^2+3x+2) is (a) R-{-1,2} (b) (-2,oo) (c) R-{-1,-2,-3} (d) (-3,oo)-{-1,-2}

The domain of f(x)=((log)_2(x+3))/(x^2+3x+2) is (a) R-{-1,2} (b) (-2,oo) (c) R-{-1,-2,-3} (d) (-3,oo)-(-1,-2}

Domain of [ x ] + x is : 1)   R   2 )   z   3 ) R - 2

Prove that the domain of g(x) = cot^-1 x/sqrt(x^2 - [x]) , x in R is R - { sqrtn : n ge 0 , n in z} .

Consider the function y=f(x) satisfying the condition f(x+(1)/(x))=x^(2)+1/x^(2)(x!=0) Then the domain of f(x) is R domain of f(x) is R-(-2,2) range of f(x) is [-2,oo] range of f(x) is (2,oo)

The domain of definition of f(x)=((log)_2(x+3))/(x^2+3x+2) is R-{-1,-2} (b) (-2,oo) R-{-1,-2,-3} (d) (-3,oo)-{-1,-2}

The domain of f(x)=((log)_2(x+3))/(x^2+3x+2) is R-{-1,2} (b) (-2,oo) R-{-1,-2,-3} (d) (-3,oo)-(-1,-2}

The domain of f (x) = sqrt (log ((1)/(| sin x |))) is (i) (-oo, oo) (ii) R-{(n pi)/(2): n in Z} (iii) R-{(n pi): n in Z} (iv) R-{(n pi)+(-1)^(n) ((pi)/(2)): n in Z }

The domain of f(x)=((log)_(2)(x+3))/(x^(2)+3x+2) is R-{-1,2}(b)(-2,oo)R-{-1,-2,-3}(d)(-3,oo)-(-1,-2}