Home
Class 12
MATHS
int(0)^(3)f(x)dx=1" and "int(0)^(4)f(y)d...

int_(0)^(3)f(x)dx=1" and "int_(0)^(4)f(y)dy=2," then "int_(3)^(4)f(z)dz

Promotional Banner

Similar Questions

Explore conceptually related problems

If int_(0)^(1)f(x)dx=1 and int_(1)^(2)f(y)dy=2 , then int_(0)^(2)f(z)dz=

int_(0)^(a)f(2a-x)dx=m and int_(0)^(a)f(x)dx=n then int_(0)^(2a)f(x)dx is equal to

Evaluation of definite integrals by subsitiution and properties of its : If int_(-1)^(4)f(x)dx=4 and int_(2)^(4)(3-f(x)dx=7 then int_(2)^(-1)f(x)dx=.......

If int_(-1)^(4)f(x)dx=4andint_(2)^(4)[3-f(x)]dx=7" then "int_(-1)^(2)f(x)dx=

If int_(-1)^(4)f(x)dx=4 and int_(2)^(4)[3-f(x)]dx=7 , then int_(2)^(-1)f(x)dx=

int_(0)^(a)f(x)dx=lambda and int_(0)^(a)f(2a-x)dx=mu then int_(0)^(2a)f(x) dx is equal to

If int_(0)^(a)f(2a-x)dx = m and int_(0)^(a)f(x) dx = n , then int_(0)^(2a)f(x)dx is equal to

If int_(-1)^(4) f(x) dx=4 and int_(2)^(4) (3-f(x))dx=7 , then int_(-1)^(2) f(x)dx is a)1 b)2 c)3 d)5

Let f(x) and g(x) be any two continuous function in the interval [0, b] and 'a' be any point between 0 and b. Which satisfy the following conditions : f(x)=f(a-x), g(x)+g(a-x)=3, f(a+b-x)=f(x) . Also int_(0)^(a)f(x)dx=int_(0)^(a)f(a-x)dx, int_(a)^(b)f(x)dx=int_(a)^(b)f(x)dx=int_(a)^(b)f(a+b-x)dx If int_(0)^(a//2)f(x)dx=p," then "int_(0)^(a)f(x)dx is equal to

If int_(-1)^(4) f(x) dx = 4 and int_(2)^(4) f(x) dx = 7 then int_2^(-1) f(x) dx =