Home
Class 12
MATHS
[(x-4y+z],[yquad 4quad z+x],[zquad 4quad...

[(x-4y+z],[yquad 4quad z+x],[zquad 4quad x+y]|=0

Promotional Banner

Similar Questions

Explore conceptually related problems

Prove that: |[y+z, z, y],[z, z+x, x], [y, x, x+y]|= 4 xyz

Value of |[x+y, z,z ],[x, y+z, x],[y, y, z+x]|, where x ,y ,z are nonzero real number, is equal to a. x y z b. 2x y z c. 3x y z d. 4x y z

Value of |[x+y, z,z ],[x, y+z, x],[y, y, z+x]|, where x ,y ,z are nonzero real number, is equal to a. x y z b. 2x y z c. 3x y z d. 4x y z

|(x, 4, y+z),(y, 4, z+x),(z, 4, x+y)|=

If x(x+y+z) =4, y(x+y+z)=16 and z (x+y+z)=29 and x, y & z are positive numbers. Find x, y & z=?

Value of [[x+y, z,z ],[x, y+z, x],[y, y, z+x]], where x ,y ,z are nonzero real number, is equal to x y z b. 2x y z c. 3x y z d. 4x y z

Value of [[x+y, z,z ],[x, y+z, x],[y, y, z+x]], where x ,y ,z are nonzero real number, is equal to x y z b. 2x y z c. 3x y z d. 4x y z

Prove the identities: |[z, x, y],[ z^2,x^2,y^2],[z^4,x^4,y^4]|=|[x, y, z],[ x^2,y^2,z^2],[x^4,y^4,z^4]|=|[x^2,y^2,z^2],[x^4,y^4,z^4],[x, y, z]| =x y z (x-y)(y-z)(z-x)(x+y+z)

Prove the identities: |[z, x, y],[ z^2,x^2,y^2],[z^4,x^4,y^4]|=|[x, y, z],[ x^2,y^2,z^2],[x^4,y^4,z^4]|=|[x^2,y^2,z^2],[x^4,y^4,z^4],[x, y, z]| =x y z (x-y)(y-z)(z-x)(x+y+z)

If [[x-y,z],[2x-y,omega]] = [[-1,4], [0,5]], find x,y,z,w