Home
Class 12
MATHS
Find the value of x satisfying the equat...

Find the value of x satisfying the equation `log_(1/2)(x-1)+log_(1/2)(x+1) - log_(1/sqrt(2))(7-x) = 1`

Promotional Banner

Similar Questions

Explore conceptually related problems

The value(s) of x satisfying the equation log_(2)x+2log_(2)x-log_(2)(x-1)=3, is

Find the values of x satisfying the inequalities: log_(0.1)(4x^(2)-1)>log_(0.1)3x

Find the number of real values of x satisfying the equation. log_(2)(4^(x+1)+4)*log_(2)(4^(x)+1)=log_(1//sqrt(2)) sqrt((1)/(8))

Find the number of real values of x satisfying the equation. log_(2)(4^(x+1)+4)*log_(2)(4^(x)+1)=log_(1//sqrt(2)) sqrt((1)/(8))

Find the number of real values of x satisfying the equation. log_(2)(4^(x+1)+4)*log_(2)(4^(x)+1)=log_(1//sqrt(2)) sqrt((1)/(8))

Sum of the values of x satisfying the equation log_(3)(5x-6)log_(x)sqrt(3)=1 is

Find the value of x satisfying the equations log_(3)(log_(2)x)+log_(1//3)(log_(1//2)y)=1 and xy^(2)=9

Find the value of x satisfying the equations log_(3)(log_(2)x)+log_(1//3)(log_(1//2)y)=1 and xy^(2)=9

Find the value of x satisfying the equations log_(3)(log_(2)x)+log_(1//3)(log_(1//2)y)=1 and xy^(2)=9