Home
Class 12
MATHS
" The value of "lim(x rarr oo)(cot^(-1)(...

" The value of "lim_(x rarr oo)(cot^(-1)(x^(-a)log_(a)x))/(sec^(-1)(a^(x)log_(x)a))(a>1)" is "

Promotional Banner

Similar Questions

Explore conceptually related problems

The lim_(x rarr oo)(cot^(-1)(x^(-a)log_(a)x))/(sec^(-1)(a^(x)log_(x)a)),a>0,a!=1 is equal to

lim_(x rarr oo)(cot^(-1)(x^(-a)log_(a)x))/(sec^(-1)(a^(x)log_(x)a)),(a>1) is equal to (a)2(b)1(c)(log)_(a)2(d)0

The value of lim_(x rarr oo)x^(2)ln(x cot^(-1)x) is

underset(xtooo)lim(cot^(-1)(x^(-a)log_(a)x))/(sec^(-1)(a^(x)log_(x)a)),(agt1), is equal to

lim_(x rarr oo)(log(1+x))/(x)

The value of lim_(x rarr oo)(x^(-4)(ln x)^(10)) is

lim_(x rarr0)((a^(x)-1)/(x))=log_(e)a

The value of lim_(x rarr oo)((ln x)^(2))/(x^(2)) is

The value of lim_(x rarr1)(log_(5)5x)^(log_(x)5) is

lim_(x rarr0)(cot)^((1)/(log x))