Home
Class 12
MATHS
[" If "x(y+z-x)=y(z+x-y)=2(x+y-z)],[qqua...

[" If "x(y+z-x)=y(z+x-y)=2(x+y-z)],[qquad [log x,log y],[x^(y)y^(x)=z^(y)y^(-2)]]

Promotional Banner

Similar Questions

Explore conceptually related problems

If (y+z-x)/(log x)=y(z+x-y)/(log y)=z(x+y-z)/(log z) Prove that x^(y)y^(x)=z^(y)y^(z)=x^(z)z^(x)

If (x(y+z-x))/log x = (y(z+x-y))/log y = (z(x+y-z))/log z ," prove that "x^(y) y^(x) = z^(y) y^(z) = x^(z) z^(x) .

If (x(y+z-x))/log x = (y(z+x-y))/log y = (z(x+y-z))/log z ," prove that "x^(y) y^(x) = z^(y) y^(z) = x^(z) z^(x) .

(If(y+z-x))/((x(y+z-x))/(log y))=(y(z+x-y))/(log y)(z(x+y-z))/(log z), prove that x^(y)y^(x)=z^(x)y^(z)=x^(z)z^(x)

If log x log y log z=(y-z)(z-x)(x-y) then a )x^(y)*y^(z)*z^(x)=1 b) x^(2)y^(2)z^(2)=1c)root(z)(x)*root(y)(y)*root(z)(z)1=d) None of these

(log a)/(y-z)=(log b)/(z-x)=(log c)/(x-y), thena ^(x)b^(y)c^(z) is

If log(x+z)+log(x-2y+z)=2log(x-z)," then "x,y,z are in

If log(x+z)+log(x-2y+z)=2log(x-z)," then "x,y,z are in