Home
Class 12
MATHS
फलन f ( x ) = e ^(-|x|)...

फलन `f ( x ) = e ^(-|x|) `

Promotional Banner

Similar Questions

Explore conceptually related problems

Let f:Rto R be a functino defined by f (x) = e ^(x) -e ^(-x), then f^(-1)(x)=

If f (x) =(e^(x) -e ^(-x))/( e ^(x) +e^(-x)) +2, then the value of f ^(-1) (x) is-

If f(x)=e^(1-x) then f(x) is

If f(x)=e^(1-x) then f(x) is

f: R to R is a function defined by f(x) =(e^(|x|) -e^(-x))/(e^(x) + e^(-x)) . Then f is:

If (d(f(x)))/(dx) = e^(-x) f(x) + e^(x) f(-x) , then f(x) is, (given f(0) = 0)

If (d(f(x)))/(dx) = e^(-x) f(x) + e^(x) f(-x) , then f(x) is, (given f(0) = 0)