Home
Class 12
MATHS
tan^(-1)((1-x)/(1+x))=sin^(-1)((2x)/(1-x...

tan^(-1)((1-x)/(1+x))=sin^(-1)((2x)/(1-x^(2)))

Promotional Banner

Similar Questions

Explore conceptually related problems

Prove that sin^(-1)((2x)/(1+x^2))=tan^(-1)((2x)/(1-x^2))

Prove that sin^(-1)((2x)/(1+x^2))=tan^(-1)((2x)/(1-x^2))

simplify 2tan^(-1)((1+x)/(1-x))+sin^(-1)((1-x^(2))/(1+x^(2)))

Prove that 2tan^(-1)((1+x)/(1-x))+sin^(-1)((1-x^(2))/(1+x^(2)))=pi

The value of cos[2tan^(-1)(1+x)/(1-x)+sin^(-1)(1-x^(2))/(1+x^(2))] is

If x_(1)=2tan^(-1)((1+x)/(1-x)), x_(2)=sin^(-1)((1-x^(2))/(1+x^(2)))," where "x in (0, 1)," then "x_(1)+x_(2) is equal to

tan^(-1)sqrt((1-x)/(1+x))+sin^(-1)2x sqrt(1-x^(2))=(5 pi)/(12) if x=

Prove that: sin{tan^(-1)((1-x^2)/(2x))+cos^(-1)((1-x^2)/(1+x^2))}=1

Prove that: sin{tan^(-1)((1-x^2)/(2x))+cos^(-1)((1-x^2)/(1+x^2))}=1