Home
Class 12
MATHS
underset x rarr0^(*)L(2^(1/x)-1)/(2^(1/x...

underset x rarr0^(*)L(2^(1/x)-1)/(2^(1/x)+1)=

Promotional Banner

Similar Questions

Explore conceptually related problems

lim_(x rarr0)(2^(x)-1)/(x)

lim_(x rarr0^(+))(2^((1)/(x))-1)/(2^((1)/(x))+1)=

Prove that: underset(x rarr0)lim ((x-1+cosx)/(x))^(1/x) = e^(-1/2)

lim_(x rarr0)(2^(2x)-1)/(x)

lim_(x rarr0)(2^(5x)-1)/(x)

lim_(x rarr0)(2^(x)-1)/((1+x)^(1/2)-1)

underset( x rarr 0 ) ("Lim") [ ((1+x)^(1//x))/( e ) ]^(1//x)

lim_(x rarr0)(b^(x)-1)/(a^(x)-1)

Evaluate the following limits. underset (x rarr 0)Lt (1-cos x)/(2x^2)