Home
Class 12
MATHS
If 3^x = 4^(x-1) then x can not be equal...

If `3^x = 4^(x-1)` then x can not be equal to

Promotional Banner

Similar Questions

Explore conceptually related problems

If 3^x=4^(x-1) , then x equals

If 3^x=4^(x-1) , then x equals

If 3^x=4^(x-1) , then x equals

If 3^(x)=4^(x-1) , then x is equal to

If 3^(x)=4^(x-1) , then x is equal to

If ((1+cos2x))/(sin2x)+3(1+(tanx)tan.(x)/(2))sin x=4 then the value of tanx can be equal to

If ((1+cos2x))/(sin2x)+3(1+(tanx)tan.(x)/(2))sin x=4 then the value of tanx can be equal to

If the expression |{:(x^2+x+3,1,4),(2x^4+x^3+2x+1,2,3),(x^2+x,1,1):}| is equal to ax^4+bx^3+cx^2+dx+e , then the value of e is equal to

If the expression |{:(x^2+x+3,1,4),(2x^4+x^3+2x+1,2,3),(x^2+x,1,1):}| is equal to ax^4+bx^3+cx^2+dx+e , then the value of e is equal to