Home
Class 12
MATHS
निम्न अवकल समीकरण को हल कीजिए : (e^(x)...

निम्न अवकल समीकरण को हल कीजिए :
`(e^(x)+1)ydy=(1+y)e^(x)dx.`

Promotional Banner

Similar Questions

Explore conceptually related problems

निम्न समीकरण को हल कीजिए - tan^(-1)(x-1)+tan^(-1)(x)+tan^(-1)(x+1)=tan^(-1) 3 x

dx+xdy = e^(-y)sec^(2)ydy

2e^(x)dx-sec^(2)ydy=0

If the curve satisfy the equation (e^(x)+1)ydy=(y+1)e^(x)dx, passes through (0,0) and (k,1) then k is

if y=(e^(x))/(1+e^(x)) find (dy)/(dx)

e^(x)tanydx+(1-e^(x))sec^(2)ydy=0

Solve: (1+3e^(y//x))dy+3e^(y//x)(1-y/x)dx=0

If y =( e^(x) + 1)/( e^(x)) ,then (dy)/(dx) =

The general solution of differential equation (e^(x)+1)ydy=(y+1)e^(x)dx is