Home
Class 12
MATHS
[" 16.For any "a,b,x,y>0," prove that: "...

[" 16.For any "a,b,x,y>0," prove that: "],[(2)/(3)tan^(-1)((3ab^(2)-a^(3))/(b^(3)-3a^(2)b))+(2)/(3)tan^(-1)((3xy^(2)-x^(3))/(y^(3)-3x^(2)y))=tan^(-1)(2a beta)/(a^(2)-beta^(2))],[" where "alpha=-ax+by,beta=bx+ay" ."]

Promotional Banner

Similar Questions

Explore conceptually related problems

For any a,b,c,x,y>0 prove that :(2)/(3)tan^(-1)((3ab^(2)-a^(3))/(b^(3)-3a^(2)b))+(2)/(3)tan^(-1)((3xy^(2)-x^(3))/(y^(3)-3x^(2)y))=tan^(-1)(2 alpha beta)/(a^(2)-beta^(2)) where alpha=-ax+by,beta=bx+ay

For any a ,\ b ,\ x ,\ y >0 , prove that : 2/3tan^(-1)((3a b^2-a^3)/(b^3-3a^2b))+2/3tan^(-1)((3x y^2-x^3)/(y^3-3x^2y))=tan^(-1)(2alphabeta)/(alpha^2-beta^2) , where alpha=-a x+b y beta=b x+a ydot

Prove that tan^(-1)""(3a^(2)x-x^(3))/(a^(3)-3ax^(2))=3tan^(-1)""x/a .

Show that (tan^(-1))(2ab)/(a^(2)-b^(2))+(tan^(-1))(2xy)/(x^(2)-y^(2))=(tan^(-1))(2 alpha beta)/(alpha^(2)-beta^(2)) where alpha=ax-by and beta=ay+bx

Show that (tan^-1)(2ab)/(a^2-b^2)+(tan^-1)(2xy)/(x^2-y^2)=(tan^-1) (2alphabeta)/(alpha^2-beta^2), where alpha=ax- by and beta=ay+bx.

Prove that: (alpha^(3))/(2)csc^(2)((1)/(2)tan^(-1)(alpha)/(beta))+(beta^(2))/(2)sec^(2)((1)/(2)tan^(-1)(beta)/(alpha))=(alpha+beta)(a^(2)+beta^(2))

If alpha=tan^(-1)((sqrt(3)x)/(2y-x)),beta=tan^(-1)((2x-y)/(sqrt(3y)))" then "alpha-beta=

If alpha = tan^(-1) ((xsqrt(3))/(2y - x)) and beta = tan^(-1) ((2x - y)/(ysqrt(3))) evaluate : alpha - beta .

cos2alpha=(3cos2beta-1)/(3-cos2beta) , then tan alpha=

If alpha=tan^(-1)((sqrt(3)x)/(2y-x)) , beta=tan^(-1)((2x-y)/(sqrt(3)y)) , then alpha-beta= pi/6 (b) pi/3 (c) pi/2 (d) -pi/3