Home
Class 9
MATHS
" ii) "cosec^(2)67^(@)-tan^(2)23^(@)=1...

" ii) "cosec^(2)67^(@)-tan^(2)23^(@)=1

Promotional Banner

Similar Questions

Explore conceptually related problems

Evaluate : (sec^(2)theta-cot^(2)(90^(@)-theta))/("cosec"^(2)67^(@)-tan^(2)23^(2))+(sin^(2)40^(@)+sin^(2)50^(@))

Evaluate : (sec^(2)theta-cot^(2)(90^(@)-theta))/("cosec"^(2)67^(@)-tan^(2)23^(2))+(sin^(2)40^(@)+sin^(2)50^(@))

Calculate : sec^(2)60^(@)-cot^(2)30^(@)-(2tan30^(@)"cosec"60^(@))/(1+tan^(2)30^(@)) .

( Sec^2 theta - cot ^2 (90 - theta))/( cosec ^2 67^@ - tan ^2 23^@) + sin ^2 40 ^@ + sin ^2 50^@ is equal to

What is the value of (tan 9^(@) tan 23^(@) tan 60^(@) tan67^(@) tan 81^(@))/("cosec"^(2)72^(@)+cos^(2)15^(@)-tan^(2)18^(@)+cos^(2)75^(@))? (a) (1)/(2 sqrt(3)) (b) (sqrt(3))/(2) (c) (1)/(sqrt(3)) (d) 2 sqrt(3)

Without using Trigonometric Tables evaluate the following :- (cosec^2 67^@-tan^2 23^@)/(sin^2 17^@+sin^2 73^@)+(sin59^@)/(cos31^@) .

The value of the determinant Delta=|{:(sin^(2)23^(@)" "sin^(2)67^(@)" "cos180^(@)),(-sin^(2)67^(@)" "-sin^(2)23^(@)" "-cos180^(@)),(cos180^(@)" "sin^(2)23^(@)" "sin^(2)67^(@)):}| is

The value of tan^(2)48^(@)-cosec^(2)42^(@)+cosec(67^(@)+theta)-sec(23^(@)-theta) is :

Find the value of ("cosec"^(2)A-1)*tan^(2)A .