Home
Class 12
MATHS
If the curves y=2\ e^x and y=a e^(-x) in...

If the curves `y=2\ e^x` and `y=a e^(-x)` intersect orthogonally, then `a=` `1//2` (b) `-1//2` (c) `2` (d) `2e^2`

Promotional Banner

Similar Questions

Explore conceptually related problems

If the curves y=2\ e^x and y=a e^(-x) intersect orthogonally, then a= (a)1//2 (b) -1//2 (c) 2 (d) 2e^2

If the curves y=2e^(x)andy=ae^(-x) intersect orthogonally, then a = __________

If the curve ax^(2)+by^(2)=1 and a'x^(2)+b'y^(2)=1 intersect orthogonally, then

The curves y=a e^x and y=b e^(-x) cut orthogonally, if (a) a=b (b) a=-b (c) a b=1 (d) a b=2

The curves y=a e^x and y=b e^(-x) cut orthogonally, if a=b (b) a=-b (c) a b=1 (d) a b=2

Find the condition for the curves: x^2/a^2-y^2/b^2=1,xy=c^2 to intersect orthogonally.

If the curves (x^(2))/(a^(2))+(y^(2))/(b^(2))=1 and (x^(2))/(c^(2))+(y^(2))/(d^(2))=1 intersect orthogonally, then

If the curves (x^(2))/(a^(2))+(y^(2))/(b^(2))=1 and (x^(2))/(c^(2))+(y^(2))/(d^(2))=1 intersect orthogonally, then

If the family of curves y=ax^2+b cuts the family of curves x^2+2y^2-y=a orthogonally, then the value of b = (A) 1 (B) 2/3 (C) 1/8 (D) 1/4

If the family of curves y=ax^2+b cuts the family of curves x^2+2y^2-y=a orthogonally, then the value of b = (A) 1 (B) 2/3 (C) 1/8 (D) 1/4