Home
Class 12
MATHS
If f''(x) gt forall in R, f(3)=0 and g(x...

If `f''(x) gt forall in R, f(3)=0 and g(x) =f(tan^(2)x-2tanx+4y)0ltxlt(pi)/(2)`,then g(x) is increasing in

Promotional Banner

Similar Questions

Explore conceptually related problems

If f"(x)>0 for all x in R, f'(3)=0,and g(x)=f(tan^2 x-2tan x+4),0

If f"(x)>0AAx in R, f'(3)=0,and g(x)=f("tan"hat2x-2"tan"x+4),0

If f''(x) gt 0 AA x in R, f'(4) = 0 and g(x) = f ( cot^2 x - 2 cot x + 5) , 0 lt x lt (pi)/(2) , then

If f'(x)>0 and f(1)=0 such that g(x)=f(cot^(2)x+2cot x+2) where0

Let f''(x) gt 0 AA x in R and g(x)=f(2-x)+f(4+x). Then g(x) is increasing in

f(x)=[tan x]+sqrt(tan x-[tan x]): 0 le x lt (pi)/(2) then f(x) is [],[ G.I.F ]

If f"(x) > 0 and f(1) = 0 such that g(x) = f(cot^2x + 2cotx + 2) where 0 < x < pi , then g'(x) decreasing in (a, b). where a + b + pi/4 …

If f"(x) > 0 and f(1) = 0 such that g(x) = f(cot^2x + 2cotx + 2) where 0 < x < pi , then g'(x) decreasing in (a, b). where a + b + pi/4 …

Let f''(x) gt 0 AA x in R and let g(x)=f(x)+f(2-x) then interval of x for which g(x) is increasing is