Home
Class 12
MATHS
alpha=lim(n->oo)sum(i=1)^nsum(j=1)^i j/(...

`alpha=lim_(n->oo)sum_(i=1)^nsum_(j=1)^i j/(n^3),` then `[1/alpha-1]` is

Promotional Banner

Similar Questions

Explore conceptually related problems

sum_(j=1)^(n)sum_(i=1)^(n)i=

S=sum_(i=1)^nsum_(j=1)^isum_(k=1)^j1

S=sum_(i=1)^nsum_(j=1)^isum_(k=1)^j1

S=sum_(i=1)^(n)sum_(j=1)^(i)sum_(k=1)^(j)1

Evaluate lim_(n->oo)1/nsum_(r=n+1)^(2n)log_e(1+r/n)

lim_(n rarr oo)sum_(i=1)^(n)(5)/(n^(3))(i-1)^(2) equals

sum_(i = 1)^n sum_(j = 1)^i sum_(k = 1)^j 1 is equal to

sum_(i=1)^(n) sum_(j=1)^(i) sum_(k=1)^(j) 1, is equal to

sum_(i=1)^(n) sum_(j=1)^(i)sum_(k=1)^(j) 1 equals :