Home
Class 12
MATHS
Let f(x)=|x-1|+|2x-1|+|3x-1|+.......+|11...

Let `f(x)=|x-1|+|2x-1|+|3x-1|+.......+|119x-1|.` If 'm' denotes the minimum value of `f(x)` the `sqrtm` equals is

Promotional Banner

Similar Questions

Explore conceptually related problems

Let f(x)=|x-1|+|2x-1|+|3x-1|+......+|119x-1| If 'm' denotes the minimum value of f(x) the sqrt(m)sqrt(m) equals is

The minimum value of f(x)=2x^2+3x+1 is

If f(x)=|x+1|-1 , what is the minimum value of f(x) ?

f(x)=((x-2)(x-1))/(x-3), forall xgt3 . The minimum value of f(x) is equal to

f(x)=((x-2)(x-1))/(x-3), forall xgt3 . The minimum value of f(x) is equal to

f(x)=((x-2)(x-1))/(x-3), forall xgt3 . The minimum value of f(x) is equal to

Let f(x)=|[x,1,-3/2],[2,2,1],[1/(x-1),0,1/2]| Find the minimum value of f(x) (given x > 1).

If f(x)=|x-1|+|x-3| ,then value of f'(2) is equal to

If f(x) = frac {x^2 -1}{x^2 +1} , for every real x, then the minimum value of f(x) is.

Let f(x)=1+|x|, x lt -1 [x], x ge -1 , where [.] denotes the greatest integer function. Then f{f(-2,3)} is equal to