Home
Class 11
MATHS
The function f(x) =[|x-3 , x leq 1 and ...

The function `f(x) =[|x-3 , x leq 1` and `(x^2/4)-((3x)/2)+(13/4) , x lt 1` is

Promotional Banner

Similar Questions

Explore conceptually related problems

The function f(x)=[|x-3,x<=1 and ((x^(2))/(4))-((3x)/(2))+((13)/(4)),x<1 is

For the function f(x)= {{:(,|x-3|,x ge 1),(,(x^(2))/(4)-(3x)/(2)+(13)/(4),x lt 1):} which one of the folllowing is incorrect

For the function f(x)= {{:(,|x-3|,x ge 1),(,(x^(2))/(4)-(3x)/(2)+(13)/(4),x lt 1):} which one of the folllowing is incorrect

The function f(x)={{:(|x-3|",", x ge1),(((x^(2))/(4))-((3x)/(2))+(13)/(4)",", x lt 1):} is

The function {{:(|x-3|,,ifxge1),((x^(2))/(2)-(3x)/(2)+(13)/(4),, if xlt 1):} is

The function defined by f(x)={|x-3|,x>=1 and (1)/(4)x^(2)-(3)/(3)x+(13)/(4),x<

Find the points of discontinuity,if any,of the following function: f(x)={|x-3|,quad if quad x>=1(x^(2))/(4)-(3x)/(2)+(13)/(4)quad ,quad if quad x<1

If function defined by f(x) ={(x-m)/(|x-m|) , x leq 0 and 2x^2+3ax+b , 0 lt x lt 1 and m^2x+b-2 , x leq 1 , is continuous and differentiable everywhere ,