Home
Class 12
MATHS
f(x)=5^(loge x), x >0 Find the imverse...

`f(x)=5^(log_e x), x >0` Find the imverse

Promotional Banner

Similar Questions

Explore conceptually related problems

If f(x) = cos(log_e x) , then find the value of f(x) cdot f(y) - 1/2[f(x/y) + f(xy)]

If f (x) = cos (log_e x) , find the value of : f(x) f(y)-1/2[f(x/y)+f(xy)] .

Find the inverse of the following function. (i) f(x) = sin^(-1)(x/3), x in [-3,3] (ii) f(x) = 5^(log_e x), x gt 0 (iii) f(x) = log_e (x+sqrt(x^2+1))

Find the inverse of the following function. (i) f(x) = sin^(-1)(x/3), x in [-3,3] (ii) f(x) = 5^(log_e x), x gt 0 (iii) f(x) = log_e (x+sqrt(x^2+1))

Find the inverse of the following function. (i) f(x) = sin^(-1)(x/3), x in [-3,3] (ii) f(x) = 5^(log_e x), x gt 0 (iii) f(x) = log_e (x+sqrt(x^2+1))

f(x)=log_(e)abs(log_(e)x) . Find the domain of f(x).

f(x)=log_(e)abs(log_(e)x) . Find the domain of f(x).

f(x)=log_(e)abs(log_(e)x) . Find the domain of f(x) .

f(x)=log_(e)abs(log_(e)x) . Find the domain of f(x).

f(x)=log_(e)x, find value of f(1)