Home
Class 12
MATHS
Let f(x)=cos(pi(|x|+2[x])) where [.] rep...

Let `f(x)=cos(pi(|x|+2[x]))` where [.] represents greatest integer function, then then (1) `f(x)` is neither odd nor even (2) `f(x)` is non periodic function (3) Range of `f(x)` is `[-1,1]` (4) `f(x)`=|f(x)| for all x.

Promotional Banner

Similar Questions

Explore conceptually related problems

Let f(x)=[x]cos ((pi)/([x+2])) where [ ] denotes the greatest integer function. Then, the domain of f is

Let f(x)=sec^(-1)[1+cos^(2)x], where [.] denotes the greatest integer function. Then the range of f(x) is

Let f(x)=|(x+(1)/(2))[x]| when -2<=x<=2| .where [.] represents greatest integer function.Then

Let f(x) = (sin (pi [ x + pi]))/(1+[x]^(2)) where [] denotes the greatest integer function then f(x) is

Let f(x) = (sin (pi [ x + pi]))/(1+[x]^(2)) where [] denotes the greatest integer function then f(x) is

Let f(x) = (sin (pi [ x - pi]))/(1+[x^2]) where [] denotes the greatest integer function then f(x) is

Let f(x) = (sin (pi [ x - pi]))/(1+[x^2]) where [] denotes the greatest integer function then f(x) is

Let f (x) = cosec^-1[1 + sin^2x], where [*] denotes the greatest integer function, then the range of f

f(x)= cosec^(-1)[1+sin^(2)x] , where [*] denotes the greatest integer function. then range of f(x) is

Let f(x)=sqrt([sin2x]-[cos2x]) (where II denotes the greatest integer function then the range of f(x) will be