Home
Class 12
MATHS
If x in (0,1) then value of tan^(-1) ((1...

If `x in (0,1)` then value of `tan^(-1) ((1-x^2)/(2x)) +cos^(-1) ((1-x^2)/(1+x^2))` is (1) `pi/2` (2) `-pi/2` (3) 0 (4) `pi`

Promotional Banner

Similar Questions

Explore conceptually related problems

If x in (0,1) then the value of tan^(-1)((1-x^2)/(2x))+cos^(-1)((1-x^2)/(1+x^2)) is equal to a) -pi/2 b)0 c) pi/2 d) pi

Find the value of tan^(-1)((x-2)/(x-1))+tan^(-1)((x+2)/(x+1))=pi/4

Find the value of tan^(-1)((x-2)/(x-1))+tan^(-1)((x+2)/(x+1))=pi/4

If tan^(-1)((2x)/(x^(2)-1))+(cos^(-1)(x^(2)-1))/(x^(2)+1)=(2 pi)/(3)

If tan^(- 1)((2x)/(x^2-1))+cos^(- 1){(x^2-1)/(x^2+1)}=(2pi)/3 then x=

Solve 3sin^(-1)((2x)/(1+x^2))-4cos^(-1)((1-x^2)/(1+x^2))+2tan^(-1)((2x)/(1-x^2))=pi/3

Solve: 3 "sin"^(-1) (2x)/(1+x^2) -4"cos"^(-1) (1-x^2)/(1+x^2) +2 "tan"^(-1) (2x)/(1-x^2) = pi/3

Solve: cos^(-1) ((x^(2)-1)/(x^(2)+1))+ tan^(-1) ((2x)/(x^(2)-1)) = 2/3 pi .

cot {tan ^ (- 1) x + tan ^ (- 1) ((1) / (x))} + cos ^ (- 1) (1-2x ^ (2)) + cos ^ (- 1) ( 2x ^ (2) -1) = pi, x> 0