Home
Class 11
MATHS
sum(i=0)^n (-1)^n (n+1) .^n Cn 3^n...

`sum_(i=0)^n (-1)^n (n+1) .^n C_n 3^n`

Promotional Banner

Similar Questions

Explore conceptually related problems

Prove that sum_(k=0)^(n) (-1)^(k).""^(3n)C_(k) = (-1)^(n). ""^(3n-1)C_(n)

Prove that sum_(k=0)^(n) (-1)^(k).""^(3n)C_(k) = (-1)^(n). ""^(3n-1)C_(n)

Prove that sum_(k=0)^(n) (-1)^(k).""^(3n)C_(k) = (-1)^(n). ""^(3n-1)C_(n)

If n in N, then sum_(r=0)^(n) (-1)^(n) (""^(n)C_(r))/(""^(r+2)C_(r)) is equal to .

The value of sum_(r=0)^(n-1)^n C_r//(^n C_r+^n C_(r+1)) equals a. n+1 b. n//2 c. n+2 d. none of these

Statement-1: sum_(r=0)^(n) (1)/(r+1) ""^(n)C_(r) = (1)/((n+1)x) {( 1 + x)^(n+1) -1}^(-1) Statement-2: sum_(r=0)^(n) (""^(n)C_(r))/(r+1) = (2^(n+1))/(n+1) .

Statement-1: sum_(r=0)^(n) (1)/(r+1) ""^(n)C_(r) = (1)/((n+1)x) {( 1 + x)^(n+1) -1}^(-1) Statement-2: sum_(r=0)^(n) (""^(n)C_(r))/(r+1) = (2^(n+1))/(n+1) .

Find the value of sum_(i=1)^n sum_(i=1)^n sum_(k=1)^n 1