Home
Class 12
MATHS
f(x)=(1)/(sqrt(|x|-x))...

f(x)=(1)/(sqrt(|x|-x))

Promotional Banner

Similar Questions

Explore conceptually related problems

Find the domain of each of the following functions given by f(x)=(1)/(sqrt(x-|x|)) (ii) f(x)=(1)/(sqrt(x+|x|)) (iii) f(x)=(1)/(sqrt(x-[x]))( iv )f(x)=(1)/(sqrt(x+[x]))

The domain of f(x)=(1)/(sqrt(x+|x|)) is

The domain of f(x)=(1)/(sqrt(x+|x|)) is

The domain of the function f defined by : f(x)=(1)/(sqrt(x-|x|)) is :

The domain of the function f(x)=(1)/(sqrt|x|-x) is

find the domain of the given function f(x)=(1)/(sqrt(x+|x|))

Find the domain of f(x)=(1)/(sqrt(x-|x|))

Find the domain of f(x)=(1)/(sqrt(x+|x|))

Find the domain of f(x)=(1)/(sqrt(x-|x|))(b)f(x)=(1)/(log|x])f(x)=log{x}

The domain of definition of the function f(x)=(1)/(sqrt(x-[x])), where [.] denotes the greatest integer function,is: