Home
Class 12
MATHS
tan^(-1)((1+x)/(1-x))=(pi)/(4)+tan^(-1)x...

tan^(-1)((1+x)/(1-x))=(pi)/(4)+tan^(-1)x,x<1

Promotional Banner

Similar Questions

Explore conceptually related problems

Solve the following equations tan^(-1)((1+x)/(1-x))=(pi)/(4)+tan^(-1)x

The relation tan^(-1)((1+x)/(1-x))=(pi)/(4)+tan^(-1)x holds true for all

The relation tan^(-1)((1+x)/(1-x))=(pi)/(4)+tan^(-1)x holds true for all

Prove that : tan^-1((1-x)/(1+x))= pi/4 - tan^-1 x

Prove that tan^-1(1+x)/(1-x) = pi/4 + tan^-1x, x < 1

tan^(-1)2x+tan^(-1)3x=(pi)/(4)

If tan ^(-1) ((a)/(x))+tan ^(-1) ((b)/(x))=(pi)/(2), then x=

tan^(-1)((a)/(x))+tan^(-1)((b)/(x))=(pi)/(2) then x=

Solve : tan^(-1)((x+1)/(x-1)) + tan^(-1)( (x-1)/(x)) = pi + tan^(-1) (-7)