Similar Questions
Explore conceptually related problems
Recommended Questions
- Lt(1^(2)n+2^(2)(n-1)+3^(2)(n-2)+...+n^(2)*1)/(1^(3)+2^(3)+....+n^(3))
Text Solution
|
- lim (n rarr oo n rarr oo) (1.n ^ (2) +2 (n-1) ^ (2) +3 (n-2) + ... + n...
Text Solution
|
- 1*2+2*2^(2)+3*2^(3)+*2^(n)=(n-1)2^(n+1)+2
Text Solution
|
- f(n)=(1^(2)n+2^(2)(n-1)+3^(2)(n-2)+...+n^(21))/(1^(3)+2^(3)+3^(3)+.......
Text Solution
|
- lim(n rarr oo) (1^2/(1-n^3)+2^2/(1-n^3)+...+n^2/(1-n^3))=
Text Solution
|
- Prove that 1*2+2*3+3*4+.....+n*(n+1)=(n(n+1)(n+2))/(3)
Text Solution
|
- 1^(3)+2^(3)+3^(3)+.....+n^(3)=(n(n+1)^(2))/(4), n in N
Text Solution
|
- 1^(3)+2^(3)+3^(3)+…..+n^(3)=(1)/(4)n^(2)(n+1)^(2)
Text Solution
|
- lim(nrarroo) [(1)/(n)+(n^(2))/((n+1)^(3))+(n^(2))/((n+2)^(3))+...+(1)/...
Text Solution
|