Home
Class 12
MATHS
" Prove that coefficient of "x^(50)" in ...

" Prove that coefficient of "x^(50)" in "(1+x^(2))^(25)(1+x^(25))(1+x^(40))(1+x^(47))" is equal to "1+^(25)C_(5)

Promotional Banner

Similar Questions

Explore conceptually related problems

The coefficient of x^50 in (1+x^2)^25(1+x^25)(1+x^40)(1+ x^45) (1 + x^47) , is

Sum of the coefficients of (1-x)^(25) is:

If x+ (1)/(x)= -1 find x^(25) + (1)/(x^(25))= ?

The coefficient of x^(24) in ((25C_(1))/(25C_(0))-x)(x-2^(2)(25C_(2))/(25C_(1))(x-3^(2)(25C_(3))/(25C_(2)))(x-4^(2)(25C_(4))/(25C_(3)))......,(x-25^(2)(25C_(25))/(25C_(24))) is equal to 2925

The coefficient of x^(5)in(1+2x+3x^(2)+...)^(-3/2)is(|x|<1)21 b.25c.26d .none of these

If x^(2)+x+1=0 then sum_(r=1)^(25)(x^(r)+(1)/(x^(r)))^(2)=

If x^(2)+x+1=0 then sum_(r=1)^(25)(x^(r)+(1)/(x^(r)))^(2)=

(x-1)/(x^(2)+5x)-(x+1)/(x^(2)-25)