Home
Class 12
MATHS
Let N=(log(8)64*log(11)100*log(12)144)^2...

Let `N=(log_(8)64*log_(11)100*log_(12)144)^2`then which of the following is/are also equal to N?

Promotional Banner

Similar Questions

Explore conceptually related problems

log_(x)4+log_(x)16+log_(x)64=12

Evaluate (log_(2)64)/(log_(2)8)

N=log_(2)5*log_((1)/(6))2*log_(3)((1)/(6)),then3^(N) is equal to

Given that N=7^(log_(49),900),A=2^(log_(2)4)+3^(log_(2)4)-4^(log_(2)2),D=(log_(5)49)(log_(7)125) Then answer the following questions : (Using the values of N, A, D) If log_(A)D=a, then the value of log_(6)12 is (in terms of a)

If 8^(log_(27)3)+27^(log_(8)4)=5^(log_(x)11), then x is equal to

If N= anti log _(3)(log_(6)(antilog_(sqrt(5))(log_(5)(1296))) then the characteristic of log N to the base 2 is equal to

If (1)/(log_(2)a)+(1)/(log_(4)a)+(1)/(log_(8)a)+(1)/(log_(16)a)+….+ (1)/(log_(2^(n))a) = (n(n+1))/(k) then k log_(a)2 is equal to

If (1)/(log_(2)a)+(1)/(log_(4)a)+(1)/(log_(8)a)+(1)/(log_(16)a)+….+ (1)/(log_(2^(n))a) = (n(n+1))/(k) then k log_(a)2 is equal to