Home
Class 12
MATHS
The value of the expression 5^((log3(log...

The value of the expression `5^((log_3(log_(2)81))/log_(3)5` always lies between

Promotional Banner

Similar Questions

Explore conceptually related problems

log_(x)log_(2)log_(3)81

the value of expression (log2)^(3)+(log8)(log5)+(log5)^(3)+3, is

Find the value of the expressions (log2)^3+log8.log(5)+(log5)^3 .

Find the value of the expressions (log2)^3+log8.log(5)+(log5)^3 .

Find the value of the expressions (log2)^3+log8.log(5)+(log5)^3 .

Find the value of the expressions (log2)^3+log8.log(5)+(log5)^3 .

Find the value of the expressions (log2)^3+log8.log(5)+(log5)^3 .

The expression (1)/(log_(5)3)+(1)/(log_(6)3)-(1)/(log_(10)3) simplifies to

The simplified value of the expression : 2^(log_(3)5)*2^(log_(3)5^(2)) - 5^(log_(3)2)*25^((log_(3)2)) is

Find the value of the expression 5^(log_(sqrt(5))2)+9^(log_(3)7)-8^(log_(2)5)