Home
Class 12
MATHS
If the roots of the equation (a^2-bc)x^2...

If the roots of the equation `(a^2-bc)x^2+2(b^2-ca)x+(c^2-ab)=0` are equal then the condition is (i) `a+b+c=0` (ii) `a^3+b^3+c^3-3abc=0` (iii) `a=0 or a^3+b^3+c^3-3abc=0` (iv) `b=0 or a^3+b^3+c^3-3abc=0`

Promotional Banner

Similar Questions

Explore conceptually related problems

Show that the roots of the equation (a^2-bc)x^2+2(b^2-ca)x+c^2-ab=0 are equal if either b=0 or , a^3+b^3+c^3-3abc=0

If the roots of the equation (c^(2)-ab)x^(2)-2(a^(2)-bc)x+b^(2)-ac=0 in x are equal, show that either a=0 or a^(3)+b^(3)+c^(3)=3abc .

Show that the roots of the equation (a^(2)-bc)x^(2)+2(b^(2)-ac)x+c^(2)-ab=0 are equal if either b=0 or a^(3)+b^(3)+c^(3)-3acb=0

Show that the roots of the equation (a^(2)-bc)x^(2)+2(b^(2)-ac)x+c^(2)-ab=0 are equal if either b=0 or a^(3)+b^(3)+c^(3)-3acb=0

Show that the roots of the equation (a^(2)-bc)x^(2)+2(b^(2)-ac)x+c^(2)-ab=0 are equal if either b=0 or a^(3)+b^(3)+c^(3)-3acb=0

Show that the roots of the equation (a^(2)-bc)x^(2)+2(b^(2)-ac)x+c^(2)-ab=0 are equal if either b=0 or a^(3)+b^(3)+c^(3)-3acb=0

If the roots of the equation (c^(2)-ab)x^(2)-2(a^(2)-bc)x+b^(2)-ac=0 are equal,prove that either a=0 or a^(3)+b^(3)+c^(3)=3abc

If the roots of the equation (c^(2)-ab)x^(3)-2(a^(2)-bc)x+b^(2)-ac=0 are real and equal prove that either a=0 (or) a^(3)+b^(3)+c^(3)=3"abc" .

If c^(2) ne ab and the roots of (c^(2)-ab)x^(2)-2(a^(2)-bc)x+(b^(2)-ac)=0 are equal, then show that a^(3)+b^(3)+c^(3)=3abc" or "a=0

If c^(2) != ab and the roots of (c^(2)-ab)x^(2)-2(a^(2)-bc)x+(b^(2)-ac)+0 are equal show that a^(3)+b^(3)+c^(3)=3abc (or) a = 0.