Home
Class 12
MATHS
The value of lim(x->0) (sin^(-1) (2x) - ...

The value of `lim_(x->0) (sin^(-1) (2x) - tan^(-1) x)/sin x` is equal to :

Promotional Banner

Similar Questions

Explore conceptually related problems

lim_(xto0)(sin^(-1)x-tan^(-1)x)/(x^(3)) is equal to

lim_(x rarr0)(tan^(-1)x-sin^(-1)x)/(sin^(3)x), is equal to

lim_(x rarr0)(sin^(-1)x-tan^(-1)x)/(x^(3)) is equal to

lim_(x rarr0)(sin^(-1)x-tan^(-1)x)/(x^(2))

The value of lim_(xto0)2/(x^(3))(sin^(-1)x-tan^(-1)x)^(2//x^(3)) equals

The value of lim_(|x| to oo) cos(tan^(-1)(sin(tan^(-1)x))) is equal to

The value of lim_(|x| rarr oo) cos (tan^(-1) (sin (tan^(-1) x))) is equal to

The value of lim_(|x| rarr oo) cos (tan^(-1) (sin (tan^(-1) x))) is equal to

The value of lim(xto0)2/(x^(3))(sin^(-1)x-tan^(-1)x)^(2//x^(2)) equals